Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Damien Dussol

Sakowin, France

Title: Production of hydrogen by biomethane microwave plasmalysis: A CO2 negative process with impact on the energy transition

Biography

Biography: Damien Dussol

Abstract

At present our society is facing two related challenges: depletion of hydrocarbon fuel resources and the worrying prospects of global climate change associated with enormous volumes of fossil-derived CO2 emissions. Currently the global predominant energy sources are fossil-based, i.e. coal, oil, natural gas and their usage results in the release of Ì´32 billion metric tons of CO2/year in the atmosphere. As such, the development of new alternative ways to produce and store energy as well as new industrial technologies must be based on environmentally responsible solutions. One of the best options to produce carbon-free energy is the decarbonization of fuel energy. In this perspective, it is expected that hydrogen (H2) will play an important role in the world’s future. Hydrogen, one of the most abundant elements on Earth, has the potential to dramatically reduce our dependence on fossil fuels. A potential source of H2 is biomethane also known as ‘renewable natural gas’, a gas with high potential of reducing the release of greenhouse gases. Biomethane can be decomposed into H2 and solid carbon. Microwave sustained plasma appears to be an excellent candidate for the activation of the thermodynamically stable methane molecule, as it is an excellent power transfer medium (electrons to molecules) and is compatible with sustainable electricity. This work concerns the characterization of methane discharges in a 2.45 GHz microwave reactor sustained at atmospheric pressure for the development of an efficient source for H2 production. The experimental protocol takes into consideration various gas mixture constituents and operating conditions, e.g., flow rate, microwave input power, as to optimize the decomposition of methane molecule into H2 and solid carbon. The economics of microwave-assisted plasma methane decomposition as a hydrogen source are evaluated.